Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity

نویسندگان

  • Zhiming Chen
  • Shibin Dai
چکیده

The time-dependent Ginzburg-Landau model which describes the phase transitions taking place in superconductors is a coupled system of nonlinear parabolic equations. It is discretized semi-implicitly in time and in space via continuous piecewise linear nite elements. A posteriori error estimates are derived for the L 1 L 2 norm by studying a dual problem of the linearization of the original system, other than the dual of error equations. Numerical simulations are included which illustrate the reliability of the estimators and the exibility of the proposed adaptive method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for the Time-Dependent Ginzburg-Landau Model of Superconductivity

The initial-boundary value problem for the time-dependent Ginzburg-Landau equa, tions that model the macroscopic behavior of superconductors is considered. The convergence of finite-dimensional, semidiscrete Galerkin approximations is studied as is a fully-discrete scheme. The results of some computational experiments are presented. Keywords-Superconductivity, Timedependent Ginzburg-Landau equa...

متن کامل

Analysis and approximation of optimal control problems for a simplified Ginzburg-Landau model of superconductivity

This paper is concerned with optimal control problems for a Ginzburg-Landau model of superconductivity that is valid for high values of the Ginzburg-Landau parameter and high external fields. The control is of Neumann type. We first show that optimal solutions exist. We then show that Lagrange multipliers may be used to enforce the constraints and derive an optimality system from which optimal ...

متن کامل

Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg–Landau equations of superconductivity

A linearized backward Euler Galerkin-mixed finite element method is investigated for the time-dependent Ginzburg–Landau (TDGL) equations under the Lorentz gauge. By introducing the induced magnetic field σ = curlA as a new variable, the Galerkin-mixed FE scheme offers many advantages over conventional Lagrange type Galerkin FEMs. An optimal error estimate for the linearized Galerkin-mixed FE sc...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity

The authors consider the Ginzburg-Landau model for superconductivity. First some well-known features of superconducting materials are reviewed and then various results concerning the model, the resultant differential equations, and their solution on bounded domains are derived. Then, finite element approximations of the solutions of the Ginzburg-Landau equations are considered and error estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2001